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We propose a level dynamics approach to the large deviation statistical characteristic function ��q� for
temporal series of dynamical variable V, which is the largest eigenvalue of the generalized evolution operator
Hq��H+qV�. This is done first by deriving “equations of motion” for the eigenvalues and the eigenstates of Hq

with the initial conditions determined by those of H, the true evolution operator for the dynamical variable
under consideration, and then by solving these equations. Furthermore, utilizing simple solvable models, it is
shown that the eigenvalues and eigenstates satisfy the equations of motion derived in this paper.
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I. INTRODUCTION

It is nowadays well known that the large deviation statis-
tics is the extension of the central limit theorem in the sense
that the latter holds in the region of small fluctuation around
the highest probability, the large deviation statistics holds in
the whole region including large deviations from the long
time average. The large deviation statistics has a close con-
nection with the equilibrium statistical mechanics, the multi-
fractal theory of turbulence and chaos, and the probability
theory �1–10�.

The large deviation statistics is described by the large de-
viation statistical characteristic function ��q�, where q is an
arbitrary real number and � is a concave function of q. For
the time series �Vt� of a dynamical variable V, whose time
evolution is determined by the operator H, the function ��q�
is determined by the generalized time evolution operator Hq
defined by �3�

Hq = H + qV �1�

for the continuous time systems such as Markovian stochas-
tic process, Langevin dynamics, and chaotic dynamics in dis-
sipative systems �Appendix A�. For discrete time systems,
the generalized time evolution operator is given by �3,11–13�

Hq = HeqV �2�

�Appendix B�.
Previously, we proposed a method to derive the eigenval-

ues of the operator Hq by utilizing a finite state approxima-
tion for Hq for discrete time dynamics and showed its use-
fulness �13�. In this method, the function ��q� is determined
by one of the poles of a certain resolvent, i.e., the closest
pole to the origin. The fundamental aim of the present paper

is to formulate the method of determination of ��q� in a
different way. Is it possible to derive ��q� with the data on
the eigenstates of the conventional evolution operator H?
The present paper is concerned with this question. In other
words, “Is it possible to solve the eigenvalue problem of Hq

when the eigenvalue problem of H is solved?.” The answer is
yes. The present problem is quite similar to the so called
level dynamics in quantum mechanics.

Two decades ago, it was found that the eigenvalue prob-
lem of the Hamiltonian H=H0+�V for a quantum bound
system which is classically nonintegrable, where H0 and V
are a classically integrable Hamiltonian and a nonintegrable
part, respectively, and � represents for the strength of nonin-
tegrability, is formulated as coupled “dynamical” equations
for energy levels and eigenfunctions by regarding � as a time
�14–17�. This is known as the level dynamics of eigenvalue
problem. The problem under consideration in this paper is
identical to solving the nonintegrable Hamiltonian except for
the fact that in the present case the variable is not Hermitian
in contrast to that Hamiltonian operators in quantum me-
chanics are Hermitian. The fundamental aim of the present
paper is to propose a method to obtain the large deviation
statistical characteristic function ��q� by solving the eigen-
value problem of Hq when the eigenvalue problem of H is
solved by applying the idea developed in the eigenvalue
problem in quantum mechanics �14–17�.

The present paper is constructed as follows. In Sec. II, we
derive a set of “equations of motion” for eigenvalues and
eigenstates of the generalized time evolution operator Hq. It
will be shown in Sec. III that simple examples rigorously
solved satisfy the proposed equations of motion. Concluding
remarks are given in Sec. IV. In Appendix A, we give a brief
review of the large deviation statistics and show the relation
between the large deviation statistical characteristic function
and the largest eigenvalue of the generalized time evolution
operator Hq. In Appendix B, the present method is extended
to discrete-time systems such as discrete-time Markovian
stochastic processes and chaotic map systems.
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II. DETERMINATION OF LARGE DEVIATION
STATISTICAL CHARACTERISTIC FUNCTION

A. “Equations of motion” for eigenvalues and eigenfunctions
of the generalized evolution operator Hq

Let H be a time evolution operator such as the transition
matrix and the Fokker-Planck operator �18� and V is the
physical variable. Since we are considering dissipative dy-
namical systems including stochastic process, the time evo-
lution operator H, whose components are real, is not a Her-
mitian operator. The operator V has real components. As
shown in Appendix A, the large deviation statistical charac-
teristic function for continuous time systems is determined
by the largest eigenvalue of the generalized evolution opera-
tor Hq given in Eq. �1�. For discrete-time systems, see Ap-
pendix B.

The right and left eigenvalue problems of the operator Hq
are, respectively, written as

Hq�n	 = �n�q��n	 , �3�


m�Hq = �m�q�
m� , �4�

�n=1,2 ,3 , . . . �. �n and �m are eigenvalues, and a ket �n	 and
a bra 
m� are eigenstates. Throughout the paper, we assume
that all the eigenstates are discrete and are nondegenerate.
One should note that eigenvalues ��n� can be complex num-
bers since H is not Hermitian. Multiplying 
m� and �n	, re-
spectively, to Eqs. �3� and �4�, we obtain


m�Hq�n	 = �n
m�n	 , �5�


m�Hq�n	 = �m
m�n	 . �6�

From these equations, the following relation follows:

��n − �m�
m�n	 = 0. �7�

This equation implies that there exists an m satisfying �m
=�n. Without loss of generality, this m is numbered as n.
Furthermore, with the normalization of eigenstates, we get

�n = �n, �8�


m�n	 = �m,n, �9�

where �m,n is the Kronecker delta. It should be noted that Eq.
�9� is invariant under the transformation ��n	→Bn �n	� and
�
m � →Bm

−1
m � � with a set of arbitrary constants �Bn�. With-
out loss of generality, we put maxnRe �n�q�=Re �1�q�. As
will be shown later, �1�q� is real. Other eigenvalues except
�1 can be generally complex because of the non-Hermitian
property of the operator Hq.

Differentiating Eq. �5� with respect to q, and noting the
relation

� d

dq

m���n	 + 
m�

d

dq
�n	 = 0, �10�

we obtain

��m − �n�
m�
d

dq
�n	 + Vmn =

d�n

dq
�m,n, �11�

where we introduced the notation

Vmn � 
m�V�n	 . �12�

Equation �11� is rewritten as

d�n�q�
dq

= Vnn, �13�

��m − �n�
m�
d

dq
�n	 = Vnn�m,n − Vmn. �14�

By assuming that eigenstates ��n	� constitute a complete set
of bases, the derivative d �n	 /dq can be expanded as a linear
combination of ket vectors. If d �n	 /dq contains the �n	 com-
ponent, then, by appropriately choosing a set of bases
�Bn�q� �n	� with scalar quantities �Bn�, it is always possible to
choose ��k	� in such a way that d �n	 /dq does not contain the
component �n	. Inserting the expansion d �n	 /dq
=
k��n�cnk �k	 with the expansion coefficients cnk into Eq.
�11�, one obtains cnk=Vkn / ��n−�k� and therefore

d

dq
�n	 = 


k��n�

Vkn

�n − �k
�k	 . �15�

Furthermore, it is easy to observe that the following expan-
sion holds:

d

dq

m� = 


k��m�

Vmk

�m − �k

k� . �16�

It should be noted that if ��n	� and �
m � � constitute a com-
plete set of bases, then an arbitrary state ��	 is expanded as
��	=
n
n ��	 �n	=
n �n	
n ��	. Thus, we obtain



n

�n	
n� = 1. �17�

This is called the completeness condition of eigenstates.
Differentiating Eq. �12�, we obtain

dVmn�q�
dq

= 

k��m�

VmkVkn

�m − �k
+ 


k��n�

VmkVkn

�n − �k
. �18�

It should be noted that if the parameter q is regarded as a
fictitious time, then Eqs. �13�, �15�, �16�, and �18� are iden-
tical to “equations of motion” for the eigenvalues ��n�q��,
eigenstates ��n	�q� , 
m � �q��, and the elements �Vmn�q�� under
the initial conditions ��n�0��, ��n	�0� , 
m � �0��, and �Vmn�0��
determined by the operator H. Therefore, numerically solv-
ing these equations of motion with the initial condition de-
termined by the eigenstates of H, we can solve the eigen-
value problem of Hq for any q.

The large deviation statistical characteristic function ��q�
is the largest eigenvalues, i.e., ��q�=maxn�Re �n�q��. With-
out loss of generality, we put ��q�=Re �1�q�=�1�q�. If �1�q�
is complex, the characteristic function Zq�t� can be negative.
In order that Zq�t� is positive for any t, the largest eigenvalue
�1�q� should be real. Therefore, noting that the largest eigen-
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value of H vanishes, we get the initial condition �1�0�=0.
The equation of motion d�1�q� /dq=V11�q� turns out to be
identical to the relation ���q�=v�q� given in Appendix A.
Furthermore, the fluctuation spectrum obtained by Eq. �A4�
is written as

S�V11�q�� = qV11�q� − �1�q� . �19�

This relation implies that the fluctuation spectrum S�V11� is
numerically obtained by plotting �qV11−�1� as a function of
V11 for different values of q.

For a moment, let us consider the case in which the num-
ber of eigenstates is finite, which is denoted as N. In this
case, the quantity

h � 

n

N

Vnn�q� �20�

turns out to be a conserved quantity, i.e., is independent of q.
This fact can be immediately proved with Eq. �18�. As a
result, the following equality holds:



n

N

��n�q� − �n�0�� = hq . �21�

Let us consider the space spanned by ��n� and �Vmn�. The
rate R�q� of contraction or divergence of the volume of a tiny
region in this space is given by

R�q� � 

n

�

��n
�d�n

dq
� + 


m,n

�

�Vmn
�dVmn

dq
�

= − 

m�n

Vmm − Vnn

�m − �n

= −
d

dq



m�n

ln��m − �n� . �22�

In the following subsections, we reformulate the above ap-
proach to concrete dynamics.

B. Finite-state Markovian process

Let us consider the finite-state Markovian process de-
scribed by the evolution equation

�P�t�
�t

= ĤP�t� , �23�

where P�t�= �P1�t� , P2�t� , . . . , PN�t��T with Pj�t� being the

probability that the state is in the jth state at time t. Ĥ is the
transition matrix with the jth element Hjk �
 j=1

N Hjk=1�. We
consider the time series of the variable Vt which takes the
value aj if the system is in the jth state. The large deviation
statistical quantity for the time series �Vt� is determined by
the largest eigenvalue of the matrix �3�

Ĥq = Ĥ + qV̂ �24�

�Appendix A�. Here V̂ is the matrix with the jk element Vjk
=aj� j,k.

Let en and em be, respectively, the right and left eigenval-

ues of Ĥq. Eigenvalue equations are written as

�Ĥqen� j � 

k=1

N

�Ĥq� jk�en�k = �n�q��en� j , �25�

�emĤq� j � 

k=1

N

�em�k�Ĥq�kj � �Ĥqem� j = �m�q��em� j . �26�

Here we have defined the adjoint operator Ĥq by Ĥq= Ĥq
T, T

representing the transpose. The orthogonality of eigenvectors
are written as

em · en = 

j=1

N

�em� j�en� j = �m,n. �27�

The equality

emĤqen = �n�m,n �28�

yields the evolution equations �13� for the eigenvalues ��n�
and �18� for the matrix elements �Vmn� with

Vmn = emV̂en = 

j=1

N

aj�em� j�en� j . �29�

The completeness condition corresponding to Eq. �17� is
written as



n=1

N

�en�k�en� j = � j,k. �30�

C. Langevin dynamics

Let us consider the Langevin dynamics

Ȧ�t� = F�A�t�,R�t�� , �31�

where A�t� is the Langevin variable and R�t� is the white
Langevin random force. The corresponding master equation
is written as the Markovian form �18�

�P�a,t�
�t

= H�a�P�a,t� �32�

with the master operator H�a�. If we consider the time evo-
lution of the scalar variable V�A�t���Vt, the large deviation
statistics of the finite-time average T−1�0

TVsds is determined
by the largest eigenvalue of the generalized evolution opera-
tor �19�

Hq�a� = H�a� + qV�a� �33�

�Appendix A�.
Let fn�a� and fm�a� are, respectively, the right and left

eigenfunctions of Hq. The eigenvalue equations are written
as

�Hqfn��a� � � db�Hq�a,bfn�b� = �nfn�a� , �34�
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�fmHq��a� � � dbfm�b��Hq�b,a = �Hqfm��a�

=�mfm�a� , �35�

where the kernels �Hq�a,b and �Hq�a,b have been defined by

�Hq�a,b = Hq�a���a − b� , �36�

�Hq�a,b = Hq�a���a − b� = �Hq�b,a, �37�

where the adjoint operator Hq of Hq satisfies
�daG1�a�Hq�a�G2�a�=�da�Hq�a�G1�a��G2�a�. The orthogo-
nality of eigenfunctions is written as

� dafm�a�fn�a� = �m,n. �38�

The equality

� dafm�a�Hq�a�fn�a� = �n�q��m,n �39�

yields the evolution equations �13� for the eigenvalues ��n�
and �18� for the elements �Vmn� defined by

Vmn�q� � � dafm�a�V�a�fn�a� . �40�

The completeness condition �17� is written as



n

fn�b�fn�a� = ��a − b� . �41�

III. APPLICATION TO SIMPLE STOCHASTIC
PROCESSES

A. Two-state Markovian process

Let us consider the two-state Markovian process with the
transition matrix

Ĥ = �− �1 �2

�1 − �2
� �42�

��1�0,�2�0�. The generalized transition matrix Ĥq and its
adjoint matrix are given by

Ĥq = �− �1 + a1q �2

�1 − �2 + a2q
� = Ĥq

T. �43�

The eigenvalues ��n� and the elements �Vmn� are obtained by
solving Eqs. �13� and �18� with the initial conditions for
them determined by H. On the other hand, since the eigen-
value problem of the matrix �43� is easily solved, we prove
that those solutions satisfy Eqs. �13� and �18� instead of di-
rectly solving the equations of motion.

It is easy to solve the eigenvalue problem of Hq. The
resulting eigenvalues ��n�q�� and eigenvectors �en�q� ,en�q��
of Ĥq are �3�

�1,2�q� =
1

2
�− ��1 + �2� + �a1 + a2�q ± �Q2 + 4�1�2� ,

�44�

e1,2�q� = A1,2� �2

Q ± �Q2 + 4�1�2

2
� , �45�

e1,2�q� = A1,2��1,
Q ± �Q2 + 4�1�2

2
� , �46�

where

Q = �1 − �2 − �a1 − a2�q , �47�

A1,2 =� �Q2 + 4�1�2 � Q

2�1�2
�Q2 + 4�1�2

. �48�

Furthermore, the elements �Vmn� are obtained as

V11�q� =
1

2�a1 + a2 −
�a1 − a2�Q

�Q2 + 4�1�2
� , �49�

V12�q� = V21�q� =
�a1 − a2���1�2

�Q2 + 4�1�2

, �50�

V22�q� =
1

2�a1 + a2 +
�a1 − a2�Q

�Q2 + 4�1�2
� . �51�

It is easy to confirm that Eqs. �44�–�46� and �49�–�51� satisfy
the equations of motion �13�, �15�, �16�, and �18�. One finds
that V11�q�+V22�q�=a1+a2 and �1�q�+�2�q�=−��1+�2�
+ �a1+a2�q. The rate of contraction of a volume in the state
space is given by

R�q� = −
2�a1 − a2�Q
Q2 + 4�1�2

=
d

dq
ln�Q2 + 4�1�2� . �52�

Therefore, we obtain R�q��0�	0� for q	q*��q*�, where
q*���1−�2� / �a1−a2�.

The large deviation statistical characteristic functions are
obtained as

��q� = �1�q� =
1

2
�− ��1 + �2� + �a1 + a2�q + �Q2 + 4�1�2� ,

�53�

S�v� =
�1 + �2

2
+

�1 − �2

a1 − a2
�v −

a1 + a2

2
�

−
2��1�2

�a1 − a2�
��a1 − v��v − a2� . �54�

It should be noted that the fluctuation spectrum has a para-
bolic form S�v�= ��1+�2��v−v0�2 /4��1�2 near v=v0

����0�= �a1�1+a2�2� / ��1+�2�, the long time average of Vt.
The deviation of S�v� from the parabolic form near its mini-
mum describes the large deviation statistics.
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B. Ornstein-Uhlenbeck process

The time evolution operator H�a� and its adjoint operator
H�a� for the Ornstein-Uhlenbeck process are given by

H�a�G�a� =
�

�a
��
a + D

�

�a
�G�a�� , �55�

H�a�G�a� = �− 
a + D
�

�a
� �G�a�

�a
. �56�

The corresponding generalized evolution operator Hq�a� is
given by

Hq�a� = H�a� + qV�a� . �57�

Its adjoint operator is given by Hq�a�=H�a�+qV�a�. In the
following, we consider the two cases, V�a�=a and a2. In
these cases, the eigenvalue problems of Hq are rigorously
solved �20�.

Case A: V�a�=a. By solving the eigenvalue problem of
Hq, the eigenvalues ��n� and eigenfunctions �fn�a� , fn�a�� are
solved to yield �20�

�n�q� = − �n − 1�
 +
Dq2


2 , �58�

fn�a� = Bn� �
/2�D

2n−1�n − 1�!
e−�
/2D�a2+�q/
�a

� Hen−1�� 


2D
�a −

2Dq


2 �� , �59�

fm�a� = Bm
−1� �
/2�D

2m−1�m − 1�!
e�q/
�a−2Dq2/
3

� Hem−1�� 


2D
�a −

2Dq


2 �� �60�

�n=1,2 ,3 , . . . �, where �Hen�x�� are the Hermite polynomials.
The coefficient Bn is chosen in such a way that dfn�q� /dq
and dfm�q� /dq do not contain the components fn�q� and
fm�q�, respectively. Furthermore, we get

Vmn�q� =
2Dq


2 �m,n +�2D




2m−1�m − 1�!
2n−1�n − 1�!

� �1

2
�m−1,n + �n − 1��m−1,n−2� . �61�

One can confirm that Eqs. �58� and �61� satisfy the equations
of motion �13� and �18�.

The large deviation statistical characteristic functions are
thus obtained as

��q� = �1�q� =
Dq2


2 , S�v� =

2

4D
v2. �62�

Since the Langevin variable A�t� is Gaussian, the coarse-

grained variable V̄t is Gaussian. Due to this fact, the fluctua-
tion spectrum S�v� has a parabolic form in the whole region
of v.

Case B: V�a�=a2. By solving the eigenvalue problem of
Hq, the eigenvalues and eigenfunctions are obtained as �20�

�n�q� = 
�− �n − 1��1 −
q

qc
+

1

2
�1 −�1 −

q

qc
�� ,

�63�

fn�q� = Nne−�
/4D���1−q/qc+1�a2
Hen−1�
a� , �64�

fm�a� = Nme−�
/4D���1−q/qc−1�a2
Hem−1�
a� �65�

�n=1,2 ,3 , . . . �, where

qc =

2

4D
, 
 =� 


2D
�1 −

q

qc
,

Nn =� 


��2n−1�n − 1�!
. �66�

It should be noted that the eigenvalue problem of the gener-
alized evolution operator Hq is valid for q	qc. The existence
of the characteristic value qc is due to the Gaussian form of
the steady state probability density P*�a�. The elements
�Vmn� are obtained as

Vmn�q� =
2D



� 1

1 − q/qc

2m−1�m − 1�!
2n−1�n − 1�! �1

4
�m−1,n+1

+ �n −
1

2
��m−1,n−1 + �n − 1��n − 2��m−1,n−3� .

�67�

It is confirmed that Eqs. �63� and �67� satisfy the equations
of motion �13� and �18�.

The large deviation statistical characteristic functions are
obtained as �20�

��q� = �1�q� =



2
�1 −

q

qc
, �68�

S�v� =



4
S̄� v

v0
� , �69�

where v0=D /
 and S̄�x� is the scaling function defined by

S̄�x� =
1

x
�x − 1�2. �70�

By reflecting the fact that the observed variable is always
positive, the fluctuation spectrum diverges for v�0.

IV. CONCLUDING REMARKS

In the present paper, we developed a theory to finding the
large deviation statistical characteristic function ��q� by
solving the eigenvalue problem of the generalized time evo-
lution operator Hq under the assumption that the eigenvalue
problem for the time evolution operator H is solved. The
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formalism is same as the level dynamics in quantum me-
chanics except the fact the time evolution operator in the
present case is not Hermitian. Namely, by deriving the
“equations of motion” for the eigenvalues ��n� and the ele-
ments �Vmn� by regarding the parameter q as the fictitious
time with the initial conditions of eigenvalues and eigen-
states determined by H, the ��q� is determined by the largest
eigenvalue among ��n�q��. Furthermore, in the present paper,
by applying the present method to simple problems which
are already solved, it was confirmed that the present equa-
tions of motion reproduce the known results. It is expected
that the present approach is useful by numerically finding
��q� by solving the “equations of motion.” In numerically
solving the equations of motion, we have to truncate the
eigenstates, provided that there exists an infinite number of
eigenstates. We have no knowledge about how to reduce the
number of eigenstates. In future, it is desired to develop a
study on carrying out concrete numerical integration of the
equations of motion.

It is quite important to note that the present dynamical
equations for the eigenvalues ��n� and the elements Vmn have
universal structures irrespective of the detail of a system un-
der consideration. The detail of the system is incorporated in
the initial condition. It is well known that the system behav-
ior of a dynamical equation in Hamiltonian systems gener-
ally depends on the initial condition and can show either
periodic or chaotic behavior. In this sense, the present situa-
tion is similar to that in Hamiltonian systems.

Twenty years ago, Nakamura and Lakshmanan �17�
showed that the level dynamics of the perturbed operator
in quantum mechanics reduces to a completely integrable
Calogero-Moser system for the “particle positions”
�xn���n�� in one dimension. On the other hand, since the
eigenvalues of Hq in the present dynamics are generally
complex due to its non-Hermitianity, by putting

�n = xn + iyn, �71�

xn�=Re �n� and yn�=Im �n� may be regarded, respectively, as
the x and y components of the nth particle. Although the
present level dynamics may be written in the form of the
particle dynamics in two dimensions, it is expected that they
are different from the Calogero-Moser system. It is interest-
ing to clarify the mathematical structure of the present dy-
namics. Further studies of the dynamical equations derived
in the present paper including the problem of integrability
and nonintegrability of them are needed.

Finally, let us add another possibility of application of the
present method to solve eigenvalue problems in a different
context. Namely, the present method to solving the eigen-
value problem of the operator H1 from that of a different,
solvable H0 may be used as follows. Let H0 and H1 be linear
operators. Define the operator Hq by

Hq = H0 + q�H1 − H0� . �72�

Numerically integrating for 0�q�1 the equations of motion
for the eigenvalues ��n�, the elements �Vmn�=�H1−H0�mn��,
and eigenstates ��n	 , 
m � � of Hq under their initial conditions
determined by H0, one can get the eigenvalues and the eigen-

functions of H1. Applications in concrete systems will be
reported in future.
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APPENDIX A: BRIEF REVIEW OF LARGE DEVIATION
STATISTICS

Let Vs be the value of a statistically steady random time
series �Vs� at time s, and let T be its correlation time. The
finite-time average over a finite time span t,

V̄t =
1

t
�

t0

t0+t

Vsds �A1�

is a fluctuating variable. For t�T, the statistical indepen-
dence of fluctuations implies that the probability density

Pt�v� of V̄t asymptotically takes the form

Pt�v� � e−S�v�t �A2�

for large t. Here S�v� is independent of t and is a concave
function of v. The explicit form of S�v� characterizes the
statistics of time series. Apparently, the inequality S�v��0
holds. Owing to the stationarity of the time series, the prob-
ability density Pt�v� approaches the distribution ��v− 
V	� as

t→�, where 
V	� V̄� is the conventional long-time average.
The function S�v� thus shows how fluctuations from V= 
V	
decay as the averaging time t is increased.

By applying the asymptotic form of Pt�v�, the character-
istic function Zq�t� has the asymptotic form �2,3�

Zq�t� � 
eqtV̄t	 � e��q�t �A3�

for large t. Here, ��q� is independent of t and is related to
S�v� through

��q� = − minv�S�v� − qv� . �A4�

The value of v which minimizes �¯� satisfies v�q�=���q�.
On the other hand, from the definition of ��q� �Eq. �A3��,
one obtains

v�q� = lim
t→�
�V̄t

eqtV̄t

Zq�t�
� . �A5�

The value v�0� is identical to the conventional long-time

average V̄�.
Generally, v�q� differs from the long time average, since

v�q� is the average with the weight factor eqtV̄t /Zq�t�. Due to
this factor, changing the parameter q, one is able to observe

a fluctuation V̄t−v�0� by magnifying its realization probabil-

ity. In particular, if �V̄t� is Gaussian, then v�q� is simply a
linear function of q. The deviation from linear dependence
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on q near 0 quantifies the non-Gaussian nature of the time
series. In this framework of the analysis, one can character-

ize a coarse-grained quantity V̄t for large t in terms of the
large deviation statistical characteristic functions S�v� and
��q�. The function S�v� is called the fluctuation spectrum.
Hereafter, by using finite-state Markovian process, Langevin
dynamics and chaotic dynamics, it is shown that the charac-
teristic function ��q� is given by the largest eigenvalue of
the operator Hq �Eq. �1��.

1. Finite-state Markovian process

Consider the N-state Markov process whose time evolu-
tion is given by

�P�t�
�t

= ĤP�t� , �A6�

where P�t�= �P1�t� , P2�t� , . . . , PN�t��T, Pj�t� being the prob-
ability that the system is in the jth state at time t �
 j=1

N Pj�t�
=1�. Ĥ is the transition matrix with the jk element Hjk

�
 j=1
N Hjk=1�. For the observed variable Vt, which takes the

value aj when the system is in the jth state, the characteristic
function is given by �3,10�

Zq�t� =�exp�q�
t0

t0+t

Vsds�� = 

j=1

N

�etĤqP*� j , �A7�

where the brackets denote the long time average and there-
fore it is identical to the average over the steady state prob-

ability P* �ĤP*=0�. Ĥq is defined by �3,10�

Ĥq = Ĥ + qV̂ . �A8�

One thus finds that the large deviation statistical characteris-

tic function ��q� is identical to the largest eigenvalue of Ĥq.

2. Langevin dynamics

Let us consider the Langevin dynamics

Ȧ�t� = F�A�t�,R�t�� , �A9�

where A�t� is the physical variable and R�t� is the white
Langevin noise. The corresponding master equation is given
by �18�

�P�a,t�
�t

= H�a�P�a,t� �A10�

with the master operator H�a�, whose explicit form is not
necessary in the present discussion.

The characteristic function for the time series �Vt

�V�A�t���, V�A�t�� being a scalar function of the Langevin
variable A�t�, is given by �19,20�

Zq�t� =�exp�q�
t0

t0+t

V�A�s��ds�� =� etHq�a�P*�a�da ,

�A11�

where the brackets denote the long time average and there-
fore it is identical to the average over the steady state prob-
ability density P*�a�. We have defined the generalized master
operator Hq by �19,20�

Hq�a� = H�a� + qV�a� . �A12�

Equation �A11� implies that ��q� is identical to the largest
eigenvalue of Hq�a�.

3. Chaotic dynamics

The equation of motion is written as

Ẋ = F�X� . �A13�

Let Vt�V�X�t�� is an observed variable, whose characteristic
function is given by

Zq�t� =�exp�q�
t0

t0+t

V�X�s��ds�� , �A14�

where the brackets represent the long time average. Note that
the following relation holds:

exp�q�
t0

t0+t

V�X�s��ds� = etHq�X�1, �A15�

where X=X�t0� and Hq is the linear operator defined by �21�

Hq�X� = H�X� + qV�X� . �A16�

The operator H is the adjoint operator of the time evolution
operator and is defined by

H�X�G = 

�

F��X�
�G

�X�

. �A17�

Therefore, the characteristic function is written as

Zq�t� =� etHq�X�1d��X� , �A18�

where ��X� is the invariant measure of the chaotic state.
Introducing the invariant density �*�X� by d��X�=�*�X�dX,
we obtain

Zq�t� =� etHq�X��*�X�dX , �A19�

where H�=−
��� /�X��F��X�� and Hq are the adjoint opera-
tors respectively of H and Hq. The characteristic function
��q� is thus identical to the largest eigenvalue of Hq and
equivalently of Hq.

As shown above, the largest eigenvalue �1�q� determines
the large deviation statistics. It is known that the eigenvalues
of H are relevant to double time correlation function of Vt.
Previously we proposed a generalized time correlation func-
tion to connect the large deviation statistics with the time
correlation function �22–24�. The generalized power spec-
trum Iq��� is expanded as
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Iq��� = lim
t→�
�� 1

�t
�

t0

t0+t

�Vs − v�q��e−i�sds�2 eqtV̄t

Zq�t��
�A20�

= 

n��1�

Kn�q�� 
n�q�
�
n�q��2 + �� − �n�q��2

+

n�q�

�
n�q��2 + �� + �n�q��2� , �A21�

where


n�q� = �1�q� − Re �n�q� , �A22�

�n�q� = Im �n�q� , �A23�

and Kn�q�’s are expansion constants. The corresponding gen-
eralized time correlation function is given by

Cq�t� = 

n��1�

Kn�q�e−
n�q�tcos��n�q�t� . �A24�

For q=0, C0�t� is identical to the conventional time correla-
tion function of the time series �Vt�. By taking the weighted
average of the power spectrum of �Vt�, the generalized power
spectrum Iq��� and the generalized time correlation function
Cq�t� are capable of picking up different characteristics of
time evolution of Vt �22–25�.

APPENDIX B: “EQUATIONS OF MOTION”
FOR EIGENVALUES AND EIGENSTATES

IN DISCRETE-TIME SYSTEMS

Let H be the time evolution operator and V be the ob-
served variable. As will be shown in the subsequent subsec-
tions in this appendix, the large deviation statistical quantity
is determined by the largest eigenvalue of the generalized
operator defined by

Hq = HeqV. �B1�

The eigenvalue equations are expressed as

Hq�n	 = e�n�q��n	 , �B2�


m�Hq = e�m�q�
m� , �B3�

where we have used the fact that the eigenvalues in the right
and left eigenvalue problems are identical. We thus obtain


m�n	 = �m,n, �B4�


m�Hq�n	 = e�n�q��m,n, �B5�

Vmn�q� = 
m�V�n	 . �B6�

The completeness condition of bras and kets is written as



n

�n	
n� = 1. �B7�

Repeating the derivation in Sec. II, we obtain the equations
of motion for ��n�q��, �Vmn�q�� and �n	 , 
n� as

d�n�q�
dq

= Vnn, �B8�

dVmn�q�
dq

= 

k��m�

VmkVkn

1 − e�k−�m
+ 


k��n�

VmkVkn

e�n−�k − 1
, �B9�

d�n	
dq

= 

k��n�

Vkn

e�n−�k − 1
�k	 , �B10�

d
m�
dq

= 

k��m�

Vmk

1 − e�k−�m

k� . �B11�

Since the largest eigenvalue of H is unity, we get the initial
condition �1�0�=0.

Consider the case in which the number of eigenstates are
finite, being denoted by N. It is easy to show that the quantity
defined by

h � 

n

N

Vnn�q� �B12�

is a conserved quantity. As a result, the following relation
holds:



n

N

��n�q� − �n�0�� = hq . �B13�

The rate of contraction or divergence of the volume of a tiny
region in the state space spanned by ��n� and �Vmn� is given
by

R�q� = 

m�n

Vmm − Vnn

e�n−�m − 1
= −

d

dq



m�n

ln�1 − e�m−�n� .

�B14�

1. Finite-state Markovian process

Let us consider the N-state Markovian process given by
the evolution equation

P�t + 1� = ĤP�t� �t = 0,1,2, . . . � �B15�

where P�t�= �P1�t� , P2�t� , . . . , PN�t��T, Pj�t� being the prob-

ability that the system is in the jth state at time t. Ĥ is the
transition matrix with the jk element Hjk �
 j=1

N Hjk=1�. Let us
consider the time series of Vt, which takes the value aj if the
system is in the jth state. The characteristic function for the
time series �Vt� is given by

Zq�t� =�exp�q

s=0

t−1

Vs�� = 

j=1

N

�Ĥq
t P*� j , �B16�

where P* is the steady probability density, and the general-

ized evolution matrix Ĥq is defined by

Ĥq = ĤeqV̂, �B17�

where V̂ is the matrix with the jk element Vjk=aj� j,k. For
large t, we get Zq�t��e��q�t. Thus, we find that the large
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deviation statistical characteristic function is identical to the

logarithm of the largest eigenvalue of Ĥq.

The eigenvalue equations of Ĥq are written as

�Ĥqen� j = e�n�q��en� j , �B18�

�emĤq� j = �Ĥqem� j = e�m�q��em� j , �B19�

where Ĥq is the adjoint matrix of Ĥq �Ĥq= Ĥq
T�. The element

Vmn is given by

Vmn�q� = emV̂en = 

j=1

N

aj�em� j�en� j . �B20�

The completeness condition is written as



n

�en�k�en� j = � j,k. �B21�

The eigenvalues ��n� and the elements �Vmn� obey the equa-
tions of motion �B8� and �B9�.

2. Chaotic maps

Let us consider the chaotic map

Xt+1 = F�Xt� �B22�

�t=0,1 ,2 ,3 , . . . �. The probability density �t�x� of Xt obeys

�t+1�x� =� dyHx,y�t�y� � H�t�x� , �B23�

Hx,y = ��x − F�y�� . �B24�

The adjoint operator H of the Frobenius-Perron operator H
has the element

Hx,y = ��y − F�x�� , �B25�

HG�x� =� dyHx,yG�y� = G�F�x�� . �B26�

For the observed time series of a scalar variable Vt
�V�Xt�, the characteristic function is given by

Zq�t� =�exp�q

s=0

t−1

Vs�� =� �Hq�x��t1d��x�

=� �Hq�x��t�*�x�dx �B27�

with ��x� and �*�x� being, respectively, the invariant mea-

sure and the invariant density. Here, the generalized
Frobenius-Perron operator Hq and its adjoint operator Hq
have been defined by

HqG�x� =� dy�Hq�x,yG�y� , �B28�

Hq�x� = H�x�eqV�x�, �B29�

�Hq�x,y = ��x − F�y��eqV�y� �B30�

and

HqG�x� =� dy�Hq�x,yG�y� , �B31�

Hq�x� = eqV�x�H�x� , �B32�

�Hq�x,y = �Hq�y,x = eqV�x�Hx,y. �B33�

For large t, Zq�t� obeys Zq�t��e��q�t. Therefore, the large
deviation characteristic function ��q� is identical to the loga-
rithm of the largest eigenvalue of Hq and Hq.

The eigenvalue equations for Hq and Hq are written as

�Hqen��x� =� dy�Hq�x,yen�y� = e�nen�x� , �B34�

�emHq��x� =� dyem�y��Hq�y,x = �Hqem��x� = e�mem�x� .

�B35�

The orthogonality of eigenstates and the elements are, re-
spectively, given by

�m,n =� dxem�x�en�x� , �B36�

Vmn�q� =� dxem�x�V�x�en�x� . �B37�

The logarithmic eigenvalues ��n� and the elements �Vmn�,
respectively, obey the equations of motion �B8� and �B9�.
Furthermore, the completeness condition of eigenstates is
written as



n

en�y�en�x� = ��x − y� . �B38�
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